Phase Coexistence in Two-Dimensional Fe<sub>0</sub><i><sub>.</sub></i><sub>70</sub>Ni<sub>0</sub><i><sub>.</sub></i><sub>30 </sub>Films on W(110)
نویسندگان
چکیده
منابع مشابه
synthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
On the Two Dimensional Dynamical Ising Model In the Phase Coexistence Region
We consider a Glauber dynamics reversible with respect to the two dimensional Ising model in a nite square of side L, in the absence of an external eld and at large inverse temperature. We rst consider the gap in the spectrum of the generator of the dynamics in two diierent cases: with plus and open boundary condition. We prove that, when the symmetry under global spin ip is broken by the bound...
متن کاملDomain coexistence in two-dimensional optical patterns.
We give evidence of coexisting transverse patterns of different symmetry in an optical beam circulating in a loop which contains a nonlinear medium. The symmetry of the patterns is controlled by the azimuthal rotation introduced in the feedback loop (nonlocality), while the competition is ruled by the input intensity which determines the distance from threshold (nonlinearity). Domains correspon...
متن کاملVapor-liquid phase coexistence and transport properties of two-dimensional oligomers.
Grand-canonical transition-matrix Monte Carlo and histogram reweighting techniques are used herein to study the vapor-liquid coexistence properties of two-dimensional (2D) flexible oligomers with varying chain lengths (m = 1-8). The phase diagrams of the various 2D oligomers follow the correspondence state (CS) principle, akin to the behavior observed for bulk oligomers. The 2D critical density...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: e-Journal of Surface Science and Nanotechnology
سال: 2015
ISSN: 1348-0391
DOI: 10.1380/ejssnt.2015.256